Implementing Multi-Modal LLM Agent Architecture with LangChain and Next.js for Telecommunication Support Systems

Natasha Gluons
4 min readJan 4, 2025

--

Hey there, fellow developers! Today, I’m going to walk you through building a sophisticated customer service AI agent using LangChain, Next.js, and Bootstrap. We’ll focus on creating a robust system that can handle the complex needs of telecommunications support while maintaining scalability and user experience.

Understanding the Technical Stack

Before we dive in, let’s get our tech stack straight. We’re using Next.js 13+ with App Router for our frontend and API routes, LangChain for orchestrating our LLM interactions, and Bootstrap for responsive UI components. Why this combination? Well, Next.js gives us that sweet spot of performance and developer experience, while LangChain abstracts away much of the complexity in building LLM-powered applications.

Setting Up Your Development Environment

First things first, you’ll want to set up your project. Here’s the initial structure you’ll need:

npx create-next-app@latest telecom-agent - typescript - tailwind - app
cd telecom-agent
npm install langchain @langchain/openai bootstrap react-bootstrap

Building the Agent’s Brain

Let’s talk about how we’re implementing the agent’s decision-making capabilities. You’ll want to create a custom agent using LangChain’s framework. Here’s how we structure our agent:

// src/lib/agent/index.ts
import { ChatOpenAI } from "@langchain/openai";
import { initializeAgentExecutorWithOptions } from "langchain/agents";
import {
CustomerToolKit,
BillingTool,
NetworkStatusTool
} from "./tools";

export async function createTelecomAgent() {
const model = new ChatOpenAI({
modelName: "gpt-4-turbo-preview",
temperature: 0.7,
streaming: true
});
const tools = [
new BillingTool(),
new NetworkStatusTool(),
// Add more custom tools as needed
];
const executor = await initializeAgentExecutorWithOptions(
tools,
model,
{
agentType: "chat-conversational-react-description",
verbose: true,
maxIterations: 3,
}
);
return executor;
}

Integrating with Your Calendar System

One of the coolest features we’re implementing is automatic consultation scheduling. Check this out:

// src/lib/calendar/scheduler.ts
import { Tool } from "langchain/tools";
import { google } from 'googleapis';
export class MeetingSchedulerTool extends Tool {
name = "meeting_scheduler";
description = "Schedule customer consultation meetings";
async _call(input: string) {
// Parse the input for meeting details
const { customerEmail, preferredTime } = JSON.parse(input);

// Your Google Calendar setup
const calendar = google.calendar({ version: 'v3', auth: YOUR_AUTH });

const event = {
summary: 'Technical Support Consultation',
description: 'Customer support session for technical assistance',
start: {
dateTime: preferredTime,
timeZone: 'UTC',
},
end: {
dateTime: new Date(new Date(preferredTime).getTime() + 30*60000).toISOString(),
timeZone: 'UTC',
},
attendees: [{ email: customerEmail }],
conferenceData: {
createRequest: {
requestId: `${Date.now()}-${Math.random().toString(36).substring(7)}`,
conferenceSolutionKey: { type: 'hangoutsMeet' }
}
},
reminders: {
useDefault: false,
overrides: [
{ method: 'email', minutes: 60 },
{ method: 'popup', minutes: 10 },
],
}
};
try {
const response = await calendar.events.insert({
calendarId: 'primary',
conferenceDataVersion: 1,
sendUpdates: 'all',
requestBody: event,
});
return JSON.stringify({
success: true,
meetingLink: response.data.hangoutLink,
meetingId: response.data.id,
startTime: response.data.start.dateTime,
});
} catch (error) {
return JSON.stringify({
success: false,
error: error.message,
});
}
}
}

Handling Real-Time Communication

Here’s where it gets interesting. We’re implementing real-time chat using Next.js App Router and Server-Sent Events (SSE). This gives us smooth streaming capabilities for our agent’s responses:

// app/api/chat/route.ts
import { StreamingTextResponse, LangChainStream } from 'ai';
import { createTelecomAgent } from '@/lib/agent';
export async function POST(req: Request) {
const { messages } = await req.json();
const { stream, handlers } = LangChainStream();

const agent = await createTelecomAgent();

agent.call({
input: messages[messages.length - 1].content,
}, { callbacks: [handlers] });
return new StreamingTextResponse(stream);
}

The UI Layer

For our frontend, we’re using a combination of Bootstrap and custom components. Here’s a peek at our chat interface:

// app/components/Chat.tsx
import { useState } from 'react';
import { Card, Form, Button } from 'react-bootstrap';
import { useChat } from 'ai/react';
export default function Chat() {
const { messages, input, handleInputChange, handleSubmit } = useChat();
return (
<Card className="chat-container">
<Card.Body>
{messages.map((message) => (
<div key={message.id} className={`message ${message.role}`}>
{message.content}
</div>
))}
</Card.Body>
<Card.Footer>
<Form onSubmit={handleSubmit}>
<Form.Control
value={input}
onChange={handleInputChange}
placeholder="How can I help you today?"
/>
</Form>
</Card.Footer>
</Card>
);
}

Best Practices and Tips

Let me share some hard-learned lessons:

1. Always implement retry logic for your LLM calls — networks can be finicky
2. Use TypeScript strictly — it’ll save you hours of debugging
3. Implement proper error boundaries in your React components
4. Cache common queries to reduce API costs
5. Monitor your token usage carefully

What’s Next?

The system we’ve built is just the beginning. You could extend it by:

- Adding voice interface capabilities
- Implementing multi-language support using LangChain’s translation chains
- Creating a dashboard for support metrics
- Adding sentiment analysis for customer interactions

Remember, the key to a successful agent implementation is balancing automation with human oversight. Start small, test thoroughly, and scale based on real user feedback.

Got questions about implementing any part of this system? Drop them in the comments below, and I’ll be happy to help you out!

#Note: Make sure to handle your API keys securely and implement proper rate limiting for production deployments. Happy coding!

If you’re interested, you can read more about it on my GitHub or feel free to contact me via email or instagram (@natgluons). Have a good day!

--

--

Natasha Gluons
Natasha Gluons

Written by Natasha Gluons

AI/ML researcher interested in data science, cloud ops, renewable energy, space exploration, cosmology, evolutionary biology, and philosophy.

No responses yet